Objectives of LTC PBR Work Group

- Based on the initial request from the NAIC, the objective of the work group was to develop a prototype stochastic model to be used to help set the direction of PBR for LTC
- The work group has completed its work and a report was released January 21, 2016
- The report includes considerations of stochastic modeling and suggested next steps
- The model is intended to be illustrative and not inclusive of all policy features that may be offered by an insurer or inclusive of detailed modeling considerations
Table of Contents

- Introduction
 - Overview
 - Background

- Model Objectives
 - Principle-Based Approach
 - Risk Categories and Policy Changes
 - Prototype Model

- Model Description
 - Model Alternatives
 - Functionalities
 - Model Structure
 - Process
 - Strengths and Weaknesses

- Modeling Results
 - Calibration
 - Discussion of Results

- Future Refinements and other Model Considerations

- Appendices
The work group identified the following objectives for a principle-based model to evaluate LTC liabilities:

- Ability to quantify the degree of variability of results, expose to entire work group;
- Appropriately address the major categories of risk associated with LTC insurance;
- Account for dynamic changes of the actions taken on the policies; and
- Serves as a prototype with adequate functionality from which refined models can be developed.
Model Objectives

- **Risk categories and mitigation**
 - A stochastic model that simulates the future financial performance of a block of LTC insurance policies over a range of scenarios can produce more useful results for principle-based analysis than the traditional point estimates from a deterministic model.

- **Prototype**
 - Excel
 - Stochastic assumptions for active mortality, lapse, incidence, recovery, and disabled mortality
 - Simplifying assumptions
 - Base model does not assume management rate action in adverse scenarios
Model Description

- Model alternatives considered
 - Random walk by policy
 - Random walk by duration
 - Simulation with pre-process look up
 - Waiting time (this is the approach taken)

- Functionalities, structure, and process
 - Role of hazard rates
 - The survival rate of an event \(m \) for a short interval \(k \) can be converted to a hazard rate as follows:
 \[
 H_{x+t}^m = \log \beta P_{x+t}^m.
 \]
 - The hazard rates are additive to arrive at the total hazard rate. Thus the probability that a specific event occurs given an event is known to have occurred is:
 \[
 H_{x+t}^m / \sum_{s} H_{x+t}^s
 \]
Model Strengths and Challenges

Strengths
- Formulas are transparent in Excel
- Handle multiple risks in multiple states on a stochastic basis
- Can be enhanced to handle many other features such as disabled lives, policyholder behavior, etc.

Challenges
- Excel has limited ability to automatically distribute processing over a server farm. This caused very lengthy run times (e.g., a single trial for 6,000 policies took approximately one hour on most workstations)
- Excel workbook size limited the number of trials run at one time
- Only process risk measure
- Stochastic interest rate generators could not be easily integrated
- Validation of the model by comparison to a deterministic model was a lengthy process
Calibration of Cash Flows

Comparison to Deterministic – Inforce Block of LTC Insurance

Sample block of 6,000 policies
Data compiled by the LTC PBR Work Group for final report
Results

Distribution Characteristics of PV of Cash Flow @ 4%

- Mean 87 m
- Maximum 106 m
- Minimum 72 m
- Std Dev 5.261 m
- Skewness 0.138209
- Kurtosis 0.168010

Sample Block of 6,000 Policies

Data compiled by the LTC PBR Work Group for final report
Results

Sample block of 6,000 LTC insurance policies, CTE calculations

- CTE 0 (GPV) 87m 100.0%
- CTE 10 88m 101.2%
- CTE 20 89m 102.1%
- CTE 30 90m 102.9%
- CTE 40 90m 103.8%
- CTE 50 91m 104.8%
- CTE 60 92m 105.8%
- CTE 70 93m 107.1%
- CTE 80 95m 108.6%
- CTE 90 97m 110.8%
- CTE 95 98m 112.8%
- CTE 99 103m 117.8%

Note: CTE 90, for example, is equal to the average of the worst 10% of scenarios, each scenario cash flows discounted at 4%

Data compiled by the by LTC PBR Work Group for final report
Future Refinements and Model Considerations

- Product features

- Management rate action

- Other
 - Accommodate policy feature or benefit changes initiated by a policyholder
 - Incorporate trends (other than those related to rate increases) in the model. This includes, for example, changes in utilization pattern for claimants of policies with inflation protection features
 - Dynamically combine interest rate scenarios with liability scenarios to reflect policyholders’ behavior and expenses under various interest rate environments
 - Run disabled lives simulation as of the projection date for existing claims in a block of LTC policies
 - Accommodate combination policies
 - Excel platform

- Parameter risk – assumption variability
Staff Contact Information

David Linn
Health Policy Analyst
American Academy of Actuaries
1850 M St., NW (Suite 300)
Washington, DC 20036
linn@actuary.org