Public Pension Plans: The Pothole-Filled Road to Retirement Security?
The views expressed in this session are those of the presenters and do not necessarily reflect the views or position of the Academy or its boards, councils, or committees, nor do they express the opinions of the presenters’ employers.
Speakers

- Bill Hallmark, MAAA, EA, ASA, FCA — VP, Pension Practice Council
 American Academy of Actuaries
- Thomas Aaron, VP — Senior Analyst
 Moody’s Investors Service
- Don Boyd, Director of Fiscal Studies
 Rockefeller Institute of Government
- Alex Brown, Research Manager
 National Association of State Retirement Administrators
An Overview of State and Local Pensions

Alex Brown
Research Manager
National Association of State Retirement Administrators
Public Pension Sustainability

- Wide variety exists among public pensions in terms of funding condition and required cost
- Plans sponsored by many states and cities are in good condition with manageable costs
- Plans sponsored by some states and cities face near-term or long-term challenges
Public pensions in the U.S.

- ~$4.1 trillion in assets
- ~14 million active (working) participants
 - 10 percent of the nation’s workforce
- 10.3 million retirees and their survivors receive ~$280 billion annually in benefits
- Annual contributions = $192 billion
 - $141 billion from employers; $51 billion from employees
 - Approximately 5.0 percent of all state and local government spending goes to public pensions
- Of 6,000+ public retirement systems, the largest 75 account for 80+ percent of assets and members
- Aggregate funding level = ~74%

US Census Bureau, Public Fund Survey
Key Factors Affecting Public Pension Funding Conditions and Sustainability

Key Positive Trends
- Widespread reforms that lower employer costs and risks
- Increased use of closed or shorter amortization periods
- Improved effort to paying full required contribution

Major Challenges
- Declining projected investment returns
- Legal restrictions to altering plan design and financing structures
- Inability or refusal of plan sponsors to pay required contributions
Common Features of Well-Funded Public Pension Plans

- Consistent payment of full required actuarially determined employer contribution
- Actuarial assumptions and methods that are reasonable or conservative, such as:
 - Investment return assumption
 - Payroll growth
 - Closed amortization method
- Benefits that are funded in advance, rather than retroactively
- The ability to enact pension reform
- Required employee contributions, to offset employer costs
Common Features of Poorly Funded Public Pension Plans

- Consistent failure to pay required actuarially determined employer contributions
- Actuarial assumptions and methods that are not in line with experience or reasonable expectations
- Benefits that are not funded in advance
Distribution of public pension funding levels, FY 16

Median = 73.1%

Size of bubbles is roughly proportionate to size of plan liabilities

Public Plan Database, Public Fund Survey
Weighted Average ARC/ADC Paid by State
FY 01 to FY 15

Weighted Average = 85.3%
Government spending on pensions

- Spending varies widely among states
- Pension benefit levels affect the spending number
- Social Security participation is an important factor
- Not all states contribute as much as they should
- Spending is higher for cities than for states
 - A larger portion of city budgets is spent on personnel
 - A larger percentage of municipal employees serve as public safety officers, whose retirement benefits are more expensive due to shorter careers
Distribution of spending on public pensions, by state, FY 15

Aggregate: 4.65%
Median: 3.52%
Methods states are using to amortize unfunded pension liabilities

- Pay the actuarially determined contribution
- Commit a portion of the budget surplus to the unfunded liability, either ad hoc or in statute (AK, HI, RI)
- Issue pension obligation bonds
- Establish a dedicated funding stream, such as revenue from tobacco, liquor, gambling, or severance taxes (KS, MT, OK)
- Dedicate a portion of sales, use, and/or corporate income tax revenues (OK)
- Reduce the funding amortization period/change the method
- Transfer ownership of the state lottery to the pension fund (NJ)
Pension Reforms

- In general, public workers are bearing more risk
 - Investment
 - Inflation
 - Longevity
 - Plan termination
- And earning lower benefits through greater use of hybrid plans, longer vesting periods, COLAs that are lower, suspended, or eliminated, etc.
- While contributing more toward the cost of their plan
Hybrid Plans

- New hybrid plans are being created by legislatures nearly every year
- Mostly DB-DC, some cash balance plans
- Usually apply to new hires only
- DB-DC plans maintain a DB component, with a lower benefit accrual rate
- Cash balance plans contain key features of DB plans, but also transfer some investment risk to workers
Statewide Hybrid Plans, 1995
Statewide Hybrid Plans, 2017

“State Hybrid Retirement Plans,” NASRA 2016
Defined Contribution Plans

The number of mandatory and optional DC plans as workers’ primary retirement benefit has grown

Mandatory:
- District of Columbia for general employees
- Michigan for state employees hired since 3/1/97
- Alaska for all hires since 7/1/06
- Oklahoma for state employees hired since 11/1/15

Alaska has a DC plan as the primary retirement benefit, combined with non-Social Security participation

Two states—Nebraska and West Virginia—moved away from DC plans as the primary retirement benefit
Statewide Defined Contribution Plans, 1995

For broad employee groups: teachers, general employees, and public safety personnel
Statewide Defined Contribution Plans, 2017

For broad employee groups: teachers, general employees, and public safety personnel
Flexible Employee Contributions

- Some states, like Arizona, Nevada, and Iowa, have featured flexible employee contributions for decades.
- Flexible contributions adjust, as prescribed in statute or funding policies, based on actuarial experience or investment performance.
- Plans in at least two states—Arkansas teachers and Pennsylvania state employees and teachers—have enacted flexible employee contributions more recently.
- Most new hires in California since 2013 and new public safety hires in Arizona this year must contribute at least one-half of the normal cost of the plan, which can change.
Default Defined Contribution Plans

- The default plan applies where employees have a choice of retirement plan.
- The default plan is the plan employees participate in if they do not make an active election.
- Among statewide plans, the default plan has been the defined benefit plan.
- Studies show that most employees accept the default plan, rather than make an active election.
- This year, two states—Michigan and Florida—established the defined contribution plan as the default plan for new hires.
- See also: *Decisions, Decisions*, by the National Institute on Retirement Security.
States that reduced or eliminated automatic COLAs

“Affecting New Hires Only”
“Affecting Current Employees & New Hires”
“Affecting Retirees”

“Significant Reforms to State Retirement Systems,” NASRA 2016
Florida eliminated all future COLA benefit accruals effective July 2011

Michigan eliminated COLAs for teachers hired since July 2010

Using legislation authorized in 2012, three Ohio pension boards have suspended or recommended suspension of COLAs

- STRS, PERS, SERS

- Ohio public employee participants do not participate in Social Security

Oklahoma effectively eliminated COLAs beginning in 2011
Contingent COLA

Some plans have provided a COLA based on investment performance for many years: Arizona, Wisconsin

More recent changes link COLAs to investment performance or the plan’s actuarial funding level:
- Louisiana, Maryland, Minnesota, Montana, Rhode Island, South Dakota, Wyoming
Establishment of triggers to close plans

The Michigan Legislature approved a new hybrid plan this year for newly hired school teachers beginning February 1, 2018.

The bill includes a provision that closes the plan if its funding level drops below 85 percent for two consecutive years.

The Texas legislature this year included a provision in legislation switching City of Houston pension plans to hybrid plans if funding levels of the plans drop below designated thresholds (60-65 percent) after designated future dates.
Transfer of mortality risk to active members

Also in the new Michigan teacher hybrid plan:

▲ A provision that will increase the normal retirement age when experience studies show an improvement in the plan’s mortality experience by at least one year

▲ This effectively shifts the plan’s mortality risk from the employer to employees
Two Positive Case Studies: South Dakota and Wisconsin

- Statewide plans that cover most or all public employees in their state
- Consistently well-funded
- Both feature plan designs with relatively modest base retirement benefits and opportunity to benefit from strong investment performance
- Investment return assumptions traditionally have been below median
- Actuarial methods focusing on avoiding or quickly amortizing unfunded liabilities
- Strong record of paying full required contribution
Public Pension Plan Investment and Funding Risk

Session: Public Pension Plans: The Pothole-Filled Road to Retirement Security?

American Academy of Actuaries
Annual Meeting & Public Policy Forum

The Fairmont Hotel
Washington, DC

Don Boyd, Director of Fiscal Studies
donald.boyd@rockinst.suny.edu

With thanks to my colleague, Yimeng Yin
November 14, 2017
Introduction

• Public pension assets: $4 trillion (FRB)
• Underfunded by approx. $1.95 trillion (FRB/BEA) despite contribution increases.
• The decline in risk-free interest rates since the 1980s and 1990s has created a very difficult investing environment for public pension plans.
• Public plans largely maintained assumed returns, increased risk.
Employer contributions are up

Employer and employee pension contributions as % of Gross Domestic Product
State and locally administered plans combined, U.S. as a whole

Contributions as % of GDP

Contributions from U.S. Bureau of the Census Annual Retirement Systems Survey
Employer contributions “only” up ~0.13% of GDP since 1980s. What’s the big deal?

• Not as small as it seems: 0.0013 x $19 Tr. ~ $25b/year. Roughly equivalent to:
 • 6% increase in average state income or sales tax, or
 • 4% cut in school aid, or
 • 25% cut in all highway capital
 • → politically painful, with repercussions

• Recent increase much larger: ~$+55b since 2006 → equivalent of 14% income or sales tax increase. Hard to do when incomes have been stagnant.

• Contributions are still $12-14 billion < ARC(ADC)

• ARC(ADC) assumes ~7.5% return. A 5% assumption would add at least $120b / year to ERC.

• Stress, and contribution increases, vary. In some places, enormous. In others, not. But risks abound.
Even after ERC increases, unfunded liability remains near record relative to economy.
Unfunded liabilities relative to economy vary greatly

Unfunded liability as % of state gross domestic product, 2014
State & locally administered plans combined

Source: Federal Reserve Board Enhanced Financial Accounts
These numbers differ from actuaries’ estimates, and reflect discounting at 5%.
Risk-free rates fell. Public plans lowered earnings assumptions, but not by much.
Public plans have moved into equity-like higher-risk investments

Source: Authors' analysis of Z.1 Financial Accounts of the United States, Federal Reserve Board, Tables L.118.b, L.120.b, and L.122
Risk to Sponsors Has Increased

Riskiness of public pension portfolios relative to state and local government taxes has increased more than threefold since 1995.

<table>
<thead>
<tr>
<th>Pension fund fiscal year</th>
<th>Invested assets, (billions of 2016 $)</th>
<th>Volatility (risk) for a portfolio with 8% expected return, (Standard Deviation)</th>
<th>One standard-deviation risk, (billions of 2016 $)</th>
<th>State & local government taxes, (billions of 2016 $)</th>
<th>One standard-deviation risk, as % of taxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$335</td>
<td>3.7%</td>
<td>$12.4</td>
<td>$516.6</td>
<td>2.4%</td>
</tr>
<tr>
<td>1985</td>
<td>698</td>
<td>2.7%</td>
<td>18.8</td>
<td>685.3</td>
<td>2.7%</td>
</tr>
<tr>
<td>1995</td>
<td>1,719</td>
<td>4.3%</td>
<td>73.9</td>
<td>978.3</td>
<td>7.6%</td>
</tr>
<tr>
<td>2016</td>
<td>3,554</td>
<td>12.0%</td>
<td>426.5</td>
<td>1,576.8</td>
<td>27.0%</td>
</tr>
<tr>
<td>2016 / 1985</td>
<td>5.1</td>
<td>4.4%</td>
<td>22.6</td>
<td>2.3</td>
<td>9.8</td>
</tr>
<tr>
<td>2016 / 1995</td>
<td>2.1</td>
<td>2.8%</td>
<td>5.8</td>
<td>1.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Sources and notes:
- Volatility estimates for 1975, 1985, 1995 are from Biggs (2013); 2016 is authors’ assumption. There is about a 1 in 6 chance of a shortfall of 1 standard deviation or larger in a single year, under plausible assumptions.
- Invested assets from Federal Reserve Board, Financial Accounts of the United States.
- Taxes from Bureau of Economic Analysis, NIPA Table 3.3.
- Taxes and assets are in fiscal year 2016 dollars, adjusted using GDP price index.
- Risk measure is for a single year. Longer-term investment risks are larger.
Powerful consequence: Even *IF* assumptions are correct, a roller coaster path

Three individual simulations, all with 7.5% discount rate & 30-year 7.5% compound annual returns.
- **Deterministic run**: constant returns
- **Stochastic run**: high returns in early years
- **Stochastic run**: low returns in early years

People (politicians) interact with this system:
- Will they support 50+% contribution increases?
- Will they refrain from benefit increases and gimmicks if plan funding shoots above 100%?

And this is when assumptions are met at 30 years. Most times, things will be better or worse.
Research shows U.S. public plans, with unique regulatory environment, have increased risk where private plans and Canada/Europe plans have not

• Their statistical analysis shows that other plans reduced discount rates as market rates declined, but not U.S. public plans.

• “U.S. public pension funds have become the biggest risk-takers among pension funds internationally”

(They attribute the difference to GASB, but differences go beyond GASB.)
Moving into riskier assets is one way to maintain assumed returns. Less-apparent ways:

• Disconnect assumed return from capital market assumptions. Los Angeles Fire and Police Pensions used 7.5% in actuarial valuation but market assumptions indicated 6.2% compound return for target allocation.

• Justify long-run assumption by assuming higher returns later:
 • CalPERS 6.2% over next decade, then 7.8%
 • Ohio PERS 6.76% next 5-7 years, then 7.85%

→ Under these methods, asset volatility need not increase dramatically. Instead, plan expects to fall short of actuarial assumption, at least in the near term.
Public plans take investment risk, but do not bear investment risk

Investment risk borne by:
• Taxpayers
• People who use government services, infrastructure, etc.
• Workers and, possibly, retirees
• Future versions of the above

How can risk-bearers’ interests be considered when risk-takers make investment-related decisions?
One way we look at risk: Graphs showing likelihood of bad outcomes. We and other nerds like this.
Another approach, which we have found is more attractive to policymakers: Words.

“unless changes are made, it is likely that there will be a point over the next 30 years where the funded status of many plans will fall below 60%. … There is about a 15% chance that we will see funded statuses below 40%.” (CalPERS, Annual Review of Funding Levels and Risks Report, 2015)
Conclusions

• The decline in risk-free interest rates since the 1980s and 1990s has created a very difficult investing environment for public pension plans.

• Public plans largely maintained assumed returns, increased risk.

• Risk to sponsors and their stakeholders is much greater than before rates declined.

• Important to consider their interests in risk-taking, and to communicate risks effectively.
Public Pension Plan Investment and Funding Risk

Session: Public Pension Plans: The Pothole-Filled Road to Retirement Security?

American Academy of Actuaries
Annual Meeting & Public Policy Forum

The Fairmont Hotel
Washington, DC

Don Boyd, Director of Fiscal Studies
donald.boyd@rockinst.suny.edu

With thanks to my colleague, Yimeng Yin
November 14, 2017
Pension Risks Moving From Balance Sheets to Budgets

Tom Aaron, Vice President – Senior Analyst

NOVEMBER, 2017
Agenda / Summary

» Balance sheet unfunded liabilities at new highs
 – Unlikely to improve in coming years, even in favorable investment return scenario

» Return expectations declining, budgetary costs accelerating
 – But contributions are still slow to react to higher liabilities

» Pension asset performance never more important for government credit quality
 – Investment losses would materially compound already rising cost pressure
1

Balance sheet unfunded liabilities at new highs
“High” balance sheet leverage has been redefined

- Pension increasingly dominant in long-term liability profiles of 50 largest local governments

- Net Direct Debt
- Reported Unfunded Pension Liabilities
- Moody's ANPLs

Sources: Moody's Investors Service, based on government and pension plan CAFRs and actuarial valuations
Looking out to 2019, a favorable return scenario shows pension-related credit risk flat line, not improvement

» Assumed returns applied to 56 plan sample for 2017 / 2018 / 2019 = 11% / 7% / 7%

Sources: Moody’s Investors Service 56 plan sample, based on government and pension plan CAFRs and actuarial valuations
Return expectations declining, budgetary cost burdens accelerating
Lower investment return expectations driving many US public plans to lower discount rate assumptions

» US public pension funding regime links liability discounting with future return expectations

» Many capital markets observers have lowered return expectations
 – Median expected return for same hypothetical portfolio has declined since 2000 (left)
 – 50% equities, 30% fixed income, 20% other

» Lower discount rates produce higher liabilities, normal costs and amortization payments

Source: Milliman 2016 Public Pension Funding Study
Falling discount rates accelerating pension cost growth under government funding model

» State of California’s CalPERS pension contribution CAGR of 8% from fiscal 2017 to 2024, assuming CalPERS hits its new 7% return target each year

Source: CalPERS actuarial valuations
Costs to “tread water” would accelerate in modest downside investment return scenario

- Downside scenario model for 2017-19: cumulative 2.2% returns
- Government contribution paradigm is very slow to react to market losses

Sources: Moody’s Investors Service 56 plan sample, based on government and pension plan CAFRs and actuarial valuations
Pension asset performance never more important for government credit quality
Relative scale of unfunded liabilities and costs are at or near historical highs

Yet, scale of potential downside from assets remains elevated

Source: Oregon PERS

Source: Arizona PSPRS
Declines in reported US public pension discount rates are overdue

» Even at new, lower levels, reported discount rates remain well above market interest rates
» Callan: volatility risk required to maintain 7.5% return expectations roughly tripled from 1995 to 2015

Sources: CalPERS, Federal Reserve of St. Louis, Callan
Low interest rates and reach for yield have forced public pension portfolio allocations away from fixed income

» Sample portfolio mix to produce expected return of 7.5%

Source: Callan capital markets assumptions
Recently strong investment performance is welcome news for US public pensions

But required significant allocations to volatile asset classes

Source: CalPERS

Weighted Sources of Investment Return, CalPERS FYE 6/30/2017

Pension Risks Moving From Balance Sheets to Budgets
Reported net liability reflects only a portion of balance sheet pension risks

» Two governments with similar unfunded liabilities may have very different scale of potential asset downside

Source: Moody's Investors Service
Moody’s pension “budget shock” index measures one year probability of asset losses of 25% or more of gov’t revenues

» Considers relative size of pension assets, and risk-taking, using assumed return as proxy

<table>
<thead>
<tr>
<th>ANPL as % of Operating Revenues</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>182%</td>
<td>708%</td>
<td>564%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pension Assets as % of Operating Revenues</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>155%</td>
<td>155%</td>
<td>533%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Shock" investment Return = 25% of Revenues</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-16.1%</td>
<td>-16.1%</td>
<td>-4.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assumed Rate of Investment Return</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.00%</td>
<td>7.50%</td>
<td>7.50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moody's Estimated Volatility, given assumed rate of return</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.70%</td>
<td>11.87%</td>
<td>11.87%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moody's Pension Budget Shock Index:</th>
<th>New York City</th>
<th>Chicago</th>
<th>Los Angeles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of "shock return," assuming normal distribution with mean equal to assumed rate of return and standard deviation equal to Moody's estimated volatility</td>
<td>0.9%</td>
<td>2.3%</td>
<td>15.2%</td>
</tr>
</tbody>
</table>

Source: Moody's Investors Service
Tom Aaron
Vice President – Senior Analyst
(312) 706-9967
thomas.aaron@moodys.com

moodys.com
Questions?