American Academy of Actuaries
Long-Term Care (LTC) Principle Based Reserve (PBR) Work Group
Update to LTC Actuarial Working Group

August 14, 2015

Al Schmitz, MAAA, FSA
Co-Chair, LTC PBR Work Group
Objectives of LTC PBR Work Group

- Based on the initial request from the NAIC, the objective of the work group is to develop a prototype stochastic model to be used to help set the direction of PBR for LTC
 - The work group has produced a draft report that is going through final peer review
 - The report includes considerations of stochastic modeling and suggested next steps
 - The model is intended to be illustrative and not inclusive of all policy features that may be offered by an insurer or inclusive of detailed modeling considerations
Draft Report Outline – Table of Contents

- Introduction
 - Overview
 - Background

- Model Objectives
 - Principle-Based Approach
 - Risk Categories and Policy Changes
 - Prototype Model

- Model Description
 - Model Alternatives
 - Functionalities
 - Model Strengths and Weaknesses
 - Future Refinements

- Modeling Results
 - Calibration
 - Discussion of Results

- Future Refinements and other Model Considerations

- Appendices
The work group identified the following objectives for a principle-based model to evaluate LTC liabilities:

- Ability to quantify the degree of variability of results, expose to entire work group,
- Appropriately address the major categories of risk associated with LTC insurance,
- Account for dynamic changes of the actions taken on the policies, and
- Serves as a prototype with adequate functionality from which refined models can be developed.
Model Objectives

- **Risk categories and mitigation**
 - A stochastic model that simulates the future financial performance of a block of LTC insurance policies over a range of scenarios can produce more useful results for principle-based analysis than the traditional point estimates from a deterministic model.

- **Prototype**
 - Excel
 - Stochastic assumptions for active mortality, lapse, incidence, recovery, and disabled mortality
 - Simplifying assumptions
 - Base model does not assume management rate action in adverse scenarios
Model Description

Model alternatives
- Random walk by policy
- Random walk by duration
- Simulation with pre-process look up
- Waiting time

Functionalities, structure, and process
- Role of hazard rates
 - The survival rate of an event m for a short interval k can be converted to a hazard rate as follows:

$$H_{m}^{x+t} = \log kp_{m}^{x+t}.$$

 - The hazard rates are additive to arrive at the total hazard rate. Thus the probability that a specific event occurs given an event is known to have occurred is:

$$H_{m}^{x+t} / \sum_{all s} H_{s}^{x+t}.$$
Model Strengths and Weaknesses

Strengths
- Formulas are transparent in Excel
- Handle multiple risks in multiple states on a stochastic basis
- Easily understood by anyone with Excel knowledge
- Can be enhanced to handle many other features such as disabled lives, policyholder behavior, etc.

Challenges
- Excel has limited ability to automatically distribute processing over a server farm. This caused very lengthy run times (e.g., a single trial for 6,000 policies took approximately one hour on most workstations)
- Excel workbook size limited the number of trials run at one time
- Only process risk measure
- Stochastic interest rate generators could not be easily integrated
- Validation of the model by comparison to a deterministic model was a lengthy process
Calibration of Cash Flows

Comparison to Deterministic – Inforce Block of LTC Insurance

Sample block of 6,000 policies
Data compiled by the LTC PBR Work Group for final report
Distribution Characteristics of PV of Cash Flow @ 4%

- Mean 87 m
- Maximum 106 m
- Minimum 72 m
- Std Dev 5.261 m
- Skewness 0.138209
- Kurtosis 0.168010

Sample Block of 6,000 Policies
Data compiled by the LTC PBR Work Group for final report
Results

Sample block of 6,000 LTC insurance policies, CTE calculations

- CTE 0 (GPV) 87m 100.0%
- CTE 10 88m 101.2%
- CTE 20 89m 102.1%
- CTE 30 90m 102.9%
- CTE 40 90m 103.8%
- CTE 50 91m 104.8%
- CTE 60 92m 105.8%
- CTE 70 93m 107.1%
- CTE 80 95m 108.6%
- CTE 90 97m 110.8%
- CTE 95 98m 112.8%
- CTE 99 103m 117.8%

Note: CTE 90, for example, is equal to the average of the worst 10% of scenarios, each scenario cash flows discounted at 4%

Data compiled by the by LTC PBR Work Group for final report
Distribution Characteristics of PV of Cash Flow @ 4%

AAA PBR LTC Model Runs

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Incidence Plus 10%</th>
<th>Incidence Minus 10%</th>
<th>Active Mortality Minus 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>87,130,339</td>
<td>99,228,164</td>
<td>74,036,463</td>
<td>94,746,011</td>
</tr>
<tr>
<td>Max</td>
<td>106,262,080</td>
<td>117,344,432</td>
<td>92,581,823</td>
<td>110,851,459</td>
</tr>
<tr>
<td>Min</td>
<td>72,487,960</td>
<td>80,432,369</td>
<td>59,192,117</td>
<td>80,400,667</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.138</td>
<td>0.058</td>
<td>0.210</td>
<td>0.089</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.168</td>
<td>-0.146</td>
<td>0.278</td>
<td>-0.050</td>
</tr>
<tr>
<td>Std Dev</td>
<td>5,261,055</td>
<td>5,638,591</td>
<td>4,949,694</td>
<td>5,292,701</td>
</tr>
<tr>
<td>Std Dev / Mean</td>
<td>6.0%</td>
<td>5.7%</td>
<td>6.7%</td>
<td>5.6%</td>
</tr>
<tr>
<td>CTE 0</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>CTE 10</td>
<td>101.2%</td>
<td>101.1%</td>
<td>101.3%</td>
<td>101.1%</td>
</tr>
<tr>
<td>CTE 20</td>
<td>102.1%</td>
<td>102.0%</td>
<td>102.3%</td>
<td>101.9%</td>
</tr>
<tr>
<td>CTE 30</td>
<td>102.9%</td>
<td>102.8%</td>
<td>103.2%</td>
<td>102.7%</td>
</tr>
<tr>
<td>CTE 40</td>
<td>103.8%</td>
<td>103.7%</td>
<td>104.2%</td>
<td>103.6%</td>
</tr>
<tr>
<td>CTE 50</td>
<td>104.8%</td>
<td>104.5%</td>
<td>105.3%</td>
<td>104.4%</td>
</tr>
<tr>
<td>CTE 60</td>
<td>105.8%</td>
<td>105.5%</td>
<td>106.4%</td>
<td>105.4%</td>
</tr>
<tr>
<td>CTE 70</td>
<td>107.1%</td>
<td>106.6%</td>
<td>107.8%</td>
<td>106.5%</td>
</tr>
<tr>
<td>CTE 80</td>
<td>108.6%</td>
<td>108.1%</td>
<td>109.5%</td>
<td>108.0%</td>
</tr>
<tr>
<td>CTE 90</td>
<td>110.8%</td>
<td>110.2%</td>
<td>112.3%</td>
<td>110.1%</td>
</tr>
<tr>
<td>CTE 95</td>
<td>112.8%</td>
<td>111.7%</td>
<td>115.0%</td>
<td>111.8%</td>
</tr>
<tr>
<td>CTE 99</td>
<td>117.8%</td>
<td>114.7%</td>
<td>119.9%</td>
<td>115.1%</td>
</tr>
</tbody>
</table>

Data compiled by the LTC PBR Work Group for final report.
Future Refinements and Model Considerations

- Product features
- Management rate action
- Other
 - Accommodate policy feature or benefit changes initiated by a policyholder
 - Incorporate trends (other than those related to rate increases) in the model. This includes, for example, changes in utilization pattern for claimants of policies with inflation protection features
 - Dynamically combine interest rate scenarios with liability scenarios to reflect policyholders’ behavior and expenses under various interest rate environments
 - Run disabled lives simulation as of the projection date for existing claims in a block of LTC policies
 - Accommodate combination policies
 - Excel platform
- Parameter risk – assumption variability
Staff Contact Information

David Linn
Health Policy Analyst
American Academy of Actuaries
1850 M St., NW (Suite 300)
Washington, DC 20036
linn@actuary.org