REINSURANCE ALLOCATION ISSUE

Richard Daillak, MAAA, FSA
Chairperson, Reinsurance Work Group
American Academy of Actuaries
Sheldon Summers, MAAA, FSA
Member, Reinsurance Work Group
American Academy of Actuaries

American Academy of Actuaries
Objective. Independent. Effective.w

Caveats

\square The opinions expressed in this presentation are those of the individual presenters and do not necessarily represent those of their employers or of the American Academy of Actuaries. It should also be also noted that there may be exceptions to some of the statements made in this presentation.

Allocation Example—w/o Reinsurance

- Two Blocks making up the Term or ULSG or Other Product Group-assume no policies were excluded
- E.g., Block A: 5-15 year term, Block B: 20 - 30-year term
\square Block A: $\operatorname{MNPR}(A)=100 ;$ ModeledRes* $(A)=90: \operatorname{MR}(A)=100$
\square Block B: $\operatorname{MNPR}(B)=100 ;$ ModeledRes* $(B)=130: \operatorname{MR}(B)=\underline{130}$
\square Combined: \quad MNPR $=200$; ModeledRes* $=220: \quad M R=220$
Allocation follows Section 2.C procedure:
\square Allocated: $\operatorname{MR}[A]=M R^{*} \operatorname{MNPR}(A) / M N P R=220 * 100 / 200=110$

$$
M R[B]=M R * M N P R(B) / M N P R=220 * 100 / 200=110
$$

Example: Coinsurance \%s: 50\%/0\%

Method	$\mathrm{MR}^{\prime \prime}[\mathrm{A}]$			$\mathrm{MR"}[\mathrm{~B}]$	
	110.0	110.0		51.7	-6.7
Sec 2.C	103.3	116.7		45.0	0.0
Stand-Alone CRs	$103]$				
NPR CRs*	103.3	116.7		45.0	0.0
w/o Reinsurance	110.0	110.0	n / a	n/a	

*In this example, the NPR CRs method equals the Stand-Alone CRs method For other coinsurance percentages, the result will not be same as Stand-Alone CRs

Example-Section 2.C Allocation

Without reinsurance:
$\square \quad$ Block 1: $\operatorname{MNPR}(A)=100 ;$ ModeledRes*(A) = 90: $\operatorname{MR}(A)=100$
$\square \quad$ Block 2: $\operatorname{MNPR}(B)=100 ;$ ModeledRes* $(B)=130: M R(B)=130$
$\square \quad$ Combined: $\mathrm{MNPR}=200 ; \quad$ ModeledRes* $=220: \quad \mathrm{MR}=220$
$\square \quad$ Allocated: $\mathrm{MR}[\mathrm{A}]=110 ; \mathrm{MR}[\mathrm{B}]=110$
Coinsure 50% of a block A; block B is not reinsured
$\square \quad$ Block 1: $M_{N P R}(A)=50 ;$ ModeledRes*' $(A)=45: M^{\prime}(A)=50$
$\square \quad$ Block 2: $\mathrm{MNPR}^{\prime}(\mathrm{B})=100$; ModeledRes*' $(\mathrm{B})=130: \mathrm{MR}^{\prime}(\mathrm{B})=130$

- Combined: $\mathrm{MNPR}^{\prime}=150 ; \quad$ ModeledRes*' $=175: \quad \mathrm{MR}^{\prime}=175$
$\square \quad$ Allocated based on Section 2.C: $M R^{\prime}[A]=175 * 50 / 150=58.3 ; R^{\prime}[B]=175 * 100 / 150=116.7$
- Credit for Reinsurance: $C R=M R^{\prime \prime}-M R^{\prime}=M R-M R^{\prime}=220-175=45$

Assume pre-reinsurance $M R$ and stand-alone MRs equal the corresponding MRs without reinsurance
Base PreReinsMR allocation on Section 2.C, so $M R^{\prime \prime}[A]=M R[A]=110 ; M R "[B]=M R[B]=110$
$\square \quad$ Allocated: $C R[A]=110-58.3=51.7 ; C R[B]=110-116.7=-6.7 ;$ Sum $=45$

American Academy of Actuaries

Allocation Based on Section 2.C

1. Calculate the post- and pre-reinsurance-ceded minimum reserve for each policy using the Section 2.C procedure-note that the each product group is allocated separately, based on the policy NPRs
2. Set the post- and pre-reinsurance-ceded allocated minimum reserves for each block equal to the sum of the policy allocated minimum reserves for all policies in the block
3. Set the credit for reinsurance for the block equal to the difference between the pre- and post-reinsurance allocated minimum reserves for the block

Allocation Based on NPR Credits

1. Calculate the aggregate credit for reinsurance per Section 8.D and the NPR credits for reinsurance (i.e., the SSAP 61R credits) for each block of policies and allocate the aggregate reserve credit to each policy in proportion to its NPR credit
2. Set the allocated pre-reinsurance-ceded minimum reserve for the block equal to the post-reinsurance-ceded minimum reserve for the block plus the allocated credit for that block

Example: Coinsurance \%s: 50\%/0\%

Method	$\mathrm{MR}^{\prime \prime}[\mathrm{A}]$			$\mathrm{MR"}[\mathrm{~B}]$	
	110.0	110.0		51.7	-6.7
Sec 2.C	103.3	116.7		45.0	0.0
Stand-Alone CRs	$103]$				
NPR CRs*	103.3	116.7		45.0	0.0
w/o Reinsurance	110.0	110.0	n / a	n/a	

*In this example, the NPR CRs method equals the Stand-Alone CRs method For other coinsurance percentages, the result will not be same as Stand-Alone CRs

Summary: Allocation Alternatives

Proposed Alternatives for Pre-Reinsurance Minimum Reserve

 Allocation:1. Section 2.C allocation based on pre-reinsurance policy NPRs
2. Allocation based on stand-alone credits
3. Allocation based on NPR Reserve Credits
4. Hybrids ((1) and (2) or (1) and (3)) -latter applied only where security is required
5. Report NPR impact for each treaty and report separately any additional change in aggregate MR
6. Actuarial discretion

Questions?

- Ian Trepanier

Life Policy Analyst
American Academy of Actuaries
Trepanier@actuary.org

